Our Global Presence
Canada
57 Sherway St,
Stoney Creek, ON
L8J 0J3
India
606, Suvas Scala,
S P Ring Road, Nikol,
Ahmedabad 380049
USA
1131 Baycrest Drive,
Wesley Chapel,
FL 33544
In Android 11, it’s introduced IORap, a new feature which greatly improves application startup times. We have observed that apps start more than 5% faster (cold startup) on average across a variety of devices. Some hero cases show 20%+ faster startup times. Users get this additional performance without any developer app changes!
IORap reduces app startup times by predicting which I/O will be required and doing it ahead of time. Many app startups have a lot of time that the IO request queue isn’t being saturated because of blocking I/O. As a result, we aren’t maximizing IO latency. After prefetching the data and compacting the I/O, the app can access this data nearly instantly from the pagecache
, significantly reducing app startup latency.
When we evaluated some popular top apps from the Play Store, 80%+ spent 10%+ time in blocking I/O during launch time. while ~50% of the apps even spent 20%+ time. A majority of apps we looked at could benefit from IORap.
IORap works as an independent service on the device. It interacts with package manager, activity manager, perfetto
service, etc via IPC. The overall architecture of IORap is shown in the following figure:
Step 1: Collecting perfetto traces
IORap uses a profiling-based strategy to determine the I/O to be prefetched. The knowledge comes from perfetto
trace, which records the kernel pagecache
page removals/additions (from ftrace). In the first several cold-runs of an app, the perfetto
tracing is on to get the pagecache missing events. Our study shows the overhead of perfetto
tracing on startup time is neglectable.
Step 2: Generating prefetch list
Based on the perfetto
traces obtained from the prior step, IORap generates a prefetch list during the idle time of the device. Basically, the prefetch list contains the information of the file (name, offset, length) that was accessed by an app when it’s launched. IORap analyzes the mm_pagemap
events from the perfetto
trace and converts its result (inode
, offset, length) to (name, offset, length) by reversing inode
to filename. Data is then stored in the prefetch list, which is a protobuf
file.
Step 3: I/O prefetching
After the prefetch list is generated, IORap can prefetch the corresponding data for the following runs of the app. The perfetto
tracing is not needed any more. The user and developer don’t need to do anything. The prefetching is performed when the user taps on the icon or indirectly via another app requesting it via Intent. Enjoy the speedup!
Step 4: Obsoleting the prefetch list
The prefetch list doesn’t live forever. Several events may cause the prefetch list to become obsolete. When an app is updated, the prefetch list is deprecated because the app may change and the previous data may be inaccurate. Also, the dexopt
service can optimize the app after installation. Once the app is optimized, the layout may differ making the prefetch
list obsolete. The obsolete prefetch list will be removed and a new round will start with perfetto trace collections.
Collating results from several experiments in our lab we determined that IORap benefits cover the spectrum from low end to high end devices. On average, IORap could provide up to ~26% speedup. It’s extremely helpful for apps that have heavy I/O during startup. For example, Spotify shows double digit improvement for both low-end devices (Go and Pixel 3A) and high end-devices (Pixel 3 or 4).
One interesting observation during the experiment is that the performance of IORap is largely impacted by the amount of prefetched data. An accurate trace duration is super important for IORap. A shorter trace duration causes less data than necessary to be prefetched and less performance gain. On the other hand, a longer one leads to more data than necessary being prefetched, which may result in slower startup in worst case scenarios. IORap uses the timestamp of when an app reports the ReportFullyDrawn
event to estimate trace duration. For apps not reporting this event, the display time is used. So invoking the reportFullyDrawn
callback at the right time can improve the performance of IORap.
We’re excited about the improvement that IORap has shown, and we plan to explore this concept more in the future in the following two directions. Firstly, prefetching more often. It would be great if prefetching could be done during profiling. Then we could eliminate some of the performance gap before generating the prefetching list by providing a prebuilt prefetching list. Secondly, IORap could predict that an app will start and begin prefetching earlier, further speeding up startup time.
For more information and to develop Android Mobile Apps, Hire Android Developer from us as we give you a high-quality product by utilizing all the latest tools and advanced technology. E-mail us any clock at – hello@hkinfosoft.com or Skype us: “hkinfosoft”. To develop Android Mobile Apps, please visit our technology page.
Content Source:
57 Sherway St,
Stoney Creek, ON
L8J 0J3
606, Suvas Scala,
S P Ring Road, Nikol,
Ahmedabad 380049
1131 Baycrest Drive,
Wesley Chapel,
FL 33544
57 Sherway St,
Stoney Creek, ON
L8J 0J3
606, Suvas Scala,
S P Ring Road, Nikol,
Ahmedabad 380049
1131 Baycrest Drive,
Wesley Chapel,
FL 33544
© 2024 — HK Infosoft. All Rights Reserved.
© 2024 — HK Infosoft. All Rights Reserved.
T&C | Privacy Policy | Sitemap